
 CH-1092 Belmont, Switzerland

Email info@didel.com, www.didel.com

www.didel.com/mot/RomEnco.pdf

Measuring speed and position with a quadrature encoder

Till recently, all computer mice had two quadrature encoders. Optical encoders developed by Logitech
are available from Didel, with compatible gear/optical masks.

Archeo-mouse encoder (1978) 7001V and 7001H circuits 120

transistions per turn
RomEnco 12 transistions per
turn www.didel.com/Rome.pdf

For a robot, there is no need for a very high
resolution, which imply dedicated circuit or
processor. The Bo10/Gm17 motor is a low cost
and effective solution for measuring precisely
distances and speed, missing on most robots.
see www.didel.com/mot/Rome.pdf
and www.didel.com/mot/RomEnco.pdf

Nouveau www.didel.com/kidules/KiEnco.pdf
Avec des programmes en C/Pinguino/Arduino

Translation soon. Ask if you are impatient
info@didel.com

A quadrature encoder uses two sensors to generate two signals shifted by 90 degrees, so that the
transition of one signal occurs in the midlle phase of the other signal. If the motor spins in one
direction, one signal is enough to get the speed and distance.

The distance is obtained by counting the pulses. If the motor stops completely before changing
direction, the sign of the motor power can decide if the distance is increasing or decreasing, but this is
not fully reliable. The speed is either obtained by counting pulses in a given time, or measuring with a
timer the period of the pulse.

When the motor changes direction, oscillate around a position, one sensor will just give erratic values.
Two sensors and a simple software (but fast enough) will never be lured.
A simple solution is to take e.g. the positive
transition on one line, and sample at that
moment the other signal. If high, the encoder
turns in one direction. If low, it turns the other.
But now if you get small oscillations of the
sampling edge when the motor is stopped, the
count will change. Bad.

Doing things correctly is not so difficult. Most interfacing books present the state machine, which can
be asynchronous (interrupts at each edge) or synchronous (signals is samples frequently enough not
to miss a transition). Let us take that synchronous approach, and test both signals for changes.

Testing the signal combination at every change allows to decide for the direction. Counting the change
pulses will be used for defining the angle/distance and speed..

Any processor can be programmed to sample and decode the quadrature signals and update an
up/down counter. The routine needs only 10-20 instructions, but must be executed frequently enough
not to miss a transition. If a mechanical rotary encoder is read, sampling must be every 1-5 millisecond
for filtering contact bounces.

The following explanations develop what is found on page 15-16 of our document on PIC
programming : http://www.didel.com/picg/doc/PicSoft.pdf

The principle is to keep the previous value A- and B- and compute the exclusive OR of combined
signals.

We propose two algorithms, developped in the 80’s by Rene Sommer, chief engineer at Logitech and
we give examples for the Microchip 10F/12F/16F microcontrollers.

If you prefer solutions documented on the Web, see
http://www.mcmanis.com/chuck/robotics/projects/lab-x3/quadratrak.html for another description of our
algorithm, slightly less compact.
For a not very efficient solution in C for Arduino, see
http://www.arduino.cc/playground/Main/RotaryEncoders

Sommer algorithm

Swapping bits and calculating the exclusive or is
easy if the two encoder bits are wired on two next
bits of the same port. If two channels, take 4
consecutive bits.
As shown in the figure, this allow to shift, mask
and XOR with the new encoder value, which is
then saved under the Old name.

The routine in CALM assembler is available from
www.didel.com/pic/libX/XEnco.asi

Fastest Sommer algorithm
The second algorithm is more efficient ; routine and tables use 35 bytes to update an 8-bit up/down
counter. PICs handle tables in a very efficient manner. The program uses two level of tables, the
second table calling the routine to be performed when a step is done, usually incrementing or
decrementing. It is a very efficient program given later.

Quadrature encoder program – 16-bit position counter
; (to be called about every 1ms if less than 1kHz step frequency)
; lasts 12/13 us (single channel, and 12/19 us (two channels).

CALM notations
.macro dd ; prepare a table 000pbyyy
 RetMove #2'%1,W
.endmacro
; PortA input encoder
; PortB out counter low
.Loc 16'20
OldPort: .Blk.16 1
Temp: .Blk.16 1
CntLow: .Blk.16 1
CntHigh: .Blk.16 1
.Loc 0
Begin:
 Move #2'11111111,W ; inputs
 Move W,TrisA
 Clr W
 Move W,TrisB ; Outputs
 Move PortA,W
; For one channel
 And #2'11,W
 Move W,OldPort
Loop:
 Move OldPort,W
 Call TaSwap
 Move W,Temp
 Move PortA,W ; bits 1,0
 And #2'11,W
 Move W,OldPort
 Xor Temp,W
 Call TaJump
; Test: display value on PortB
 Move CntLow,W
 Move W,PortB
 Jump Loop
TaSwap:
 Add W,PCL
 d 00
 d 10
 d 01
 d 11
TaJump:
 Add W,PCL
 Ret ; Nop
 Jump I1 ; Increment
 Jump D1 ; Decrement
 Ret ; Nop
I1: Inc CntLow
 Skip,NE
 Inc CntHigh
 Ret
D1: Move #1,W
 Sub W,Cnt2Low
 Skip,CS
 Dec Cnt2High
 Ret
.End

Microchip notations (not tested)
macro dd
 retlw \1
endm
; PortA input encoder
; PortB out counter low

OldPort Equ 20h
Temp Equ 21h
CntLow Equ 22h
CntHigh Equ 23h

Begin
 Movlw 0b11111111
 Tris PortA
 Clrw
 Tris PortB
 Movf PortA,0

 Andlw 0b11
 Movwf OldPort
Loop
 Movf Oldport,W
 Call TaSwap
 Movwf Temp
 Movf PortA,W ; bits 1,0
 Andlw 0b11
 Movwf OldPort
 Xorwf Temp,0
 Call TaJump
; Test: display value on PortB
 Movf CntLow,W
 Movwf PortB
 Goto Loop
TaSwap
 Addwf PCL,1
 d 00
 d 10
 d 01
 d 11
TaJump
 Addwf PCL,1
 Return ; Nop
 Goto I1 ; Increment
 Goto D1 ; Decrement
 Return ; Nop
I1 Incf CntLow,f
 Btfsc Status,2
 Incf CntHigh,f
 Return
D1 Movlw 1
 Subwf CntLow,f
 Btfsc Status,1
 Decf CntHigh,f
 Return
end

Documentation on testing the RomEnco with the Microdule M877 and using it with the Starlet
(16F690 robotic board) and the PicStar board (18F4550) on
www.didel.com/starlet/StarletRome.pdf

jdn100425/110725

