RIC324 JDN-DIDEL

@
CH-1092 Belmont, Switzerland T’DEL
info@didel.com, www.didel.com
Fichier www.didel.com/doc/DopiSync.pdf

Synchronous programming
for the 16F84/16Cbx/12C50x microcontrolers

1. Introduction

Our objective is to learn to program the PIC microcontrollers for applications with strong
real time constraints and miniaturization requirements.

We focus on the 16F84 as a convenient processor for developping the software, due
to its flash program memory and the convenience of Smile-NG. But the objective is to do
applications with the smaller 16C5x (available in a 5mm x 6mm SSOP20 package) and with
the 8-pin 12C50x (available in a 5mm x 5mm SO8 package).

Porting a debugged program from the 16F84 toward the 16C5x (with almost compatible
[/0) or toward the 12C50x (with only six 1/0) is made easy if the differences between
these processors are understood from the beginning.

Synchronous programming is a very efficient technique that garantees heavy real time
constraints with low speed (that is low power) processors. It is compatible with the
16C5x/12C50x processors which do not have interrupts.

Interrupt handling is not so convenient with the PIC microprocessor, and when several
interrupts are simultaneous, real time constraints may not be satisfied. If fast communications
are required, one have to use the more sophisticated PICs, with serial, SPI, I°C interfaces
supported by interrupt. We are not concerned here with these applications; we are
interested with networks of small PICs, but we will develop communication schemes
appropriate with 8-pin PICs, and use if required the more sophisticated PICs as a
concentrator toward a PC or other major processor.

2. Features of the PIC 16F84/16Cbhbx/12Co0x

Microchip data sheet documents all the features of these processors. We will
concentrate here on what we need for synchronous programming and on the differences
between the PIC 16F84/16C5x/12C50x. The reader is supposed to be familiar with PIC
programming and CALM notations, as explained for instance in the PICSmart brochure.

2.1. Instruction differences

Two Add/Sub instructions of the PIC 16F84 are not supported by the 16C5x/12C50x.
The PICSmart explain how easy it is to avoid their use.

Add W, #Val W
Sub W, #Val W

The Ret instruction (return from routine) is not supported. It must be replaced by
Ret #Val, W (as used for accessing tables)
Register W is modified; this means that the 16F84 routines must not pass a parameter
back in register W.

On the 16C5x/12C50x, it is easy to define a macro and be compatible (assembler may
do it automatically)

.Macro Ret
Retmove #0,W
.Endmacro

It will be seen that we do not use many routines. Most routines we could be tempted
to create are short, and not called from many places. They loose time (4 microseconds for
a Call and Return) and we do not really need to save memory space. On the Pic
16C5x/12C50x, only two levels of routines are allowed; since tables are fequently used and
are implemented as routine calls, we have to program the 16F84 with the idea we can use
only one level of routines.

10:14:59 28/04/01 8830 @TYPO:#MMI:@TYPO:#MMI:DOPISYNC.TF 1

JON-DIDEL

Synchronous programming -2 - “DIDEL. Jan 2001

2.2. Timer

Since we will use the PIC timer to synchronize the task evolution, we cannot use the
external clock input to count events and we will ignore for the moment the external clock
options and interrupts.

Our model of the timer is given in Figure 1.

INTCON
ne
R a TMRO o
~ =0 'r=zz1!
= Y :256 Sy NToTF
T LI
Quartz \: ::
Resonator 256 :‘L o J‘:
OPTION R
L1 lofofo] [[L
L
\ 000 :2
16F84 { _ Intbdge 001 :4
RBPU
| 1 111 :256
12C50xq _| GPPU
WU picsyncl

16c5x bits unused

The processor clock (quartz or RC network) is divided by 4 to give the 1 MHz
frequency that defines the 1 microsecond instruction time that will always be our reference.
A programmable predivider is implemented before the TMRO counter that can be read and
written by the processor.

The three low bits of OPTION registers control the predivider. Bits <5..3> are zero in
the timer configuration. Bits <7,6> will be explained later.

On the 16F84, the TMRO counter overflow sets the TOIF flag in register INTCON. This
flag can be cleared with a “Clr Intcon:#TOIF” instruction.

Since the TMRO is a counter, we have to initialize it with the number of increments
to overflow. Preparing a delay of 100 microsecond for instance, with the predivider by 2 is
programmed as:

; Initialization ; Inside program loop, when synchronization is required
Move #2° 00000000 ,W ; Predivide by W$: TestSkip,BS Intcon:#TOIF
Move W, Option Jump w$; Wait until TOIF bit is set (2
Move #256-(100/2) ,W ; 100 us Move #256-(100/2) ,W ; re-init timer dur.
Move W, TMRO ;o (1) Move W, TMRO ;o (1)
I ; ——=Continue

From point (1) to point (2), the time is indeed 102 us, due to the timer initialisation
and the Jump W instruction that may loose a cycle. One can correct this by writing
Move #256-(100/2)-2, W. Keep this expression in the source program: the assembler
will calculate it without mistake, and the expression makes our intention quite clear to the
reader, that is a good documentation practice.

But we will not use the above initialization and waiting loop. The PIC 16C5x/12C50x
do not have an INTCON register and the TOIF flag, since it does not support interrupts. The
only way to know that the timer has reached a zero state is to test it.

W$: Move TMRO, W
Skip,EQ
Jump WS

This is 3-instruction loop and if the predivider divides by two, there is a risk that the
“Move TMRO,W” instruction that sets the EQ/NE flag misses the zero value. At first pass
for instance, TMRO value may be 1, during Jump W instruction it is zero, and at the next
“"Move TMRO,W” instruction, its value is 255 |

We have to write the previous program module as:

10:14:59 28/04/01 8830 @TYPO:#MMI:@TYPO:#MMI:DOPISYNC.TF 2

RIC324

JON-DIDEL

Synchronous programming -3 - “DIDEL. Jan 2001

; Initialization ; Inside program loop

Move #2001 ,W ; Predivide by e e
Move W, Option W$: Move TMRO , W
Move #256-(100/4) ,W ; 100 u Skip,EQ
Move W, TMRO Jump W ; Wait until TMRO is zero
e . Move #256-(100/4) ,W ; Reinit timer
Move W, TMRO
; ——=Continue

Do not be tempted to use the Test TMRO (Move TMRO,TMRO) instruction instead of
the Move TMRO,W instruction. It does not work in this case!

3. Synchronous programming

The general scheme for synchronous programming is given in Figure 2.

Timer
Updatd | C100u
1He H casm | ATask A prask | oo
o ANext: BNext :
Off on 1 1
(execution time)
OH ATaske : |— OH BTasko:}— BBTasko :|—
1 ATask1: |— 1 BTaskl:}— BRTaskn: |—
) nH ATaskn:}— n BTaskn:
picsync2 ~d ~d

The timer synchronizes on a fixed period basis. There should be some waiting time
before resynchronisation: the best way to measure it is to clear a free bit on a port before
starting the wait for the timer and set it when the timer is reinitialized. A scope will clearly
show the execution time every 100 us. There will be an important jitter if the subtasks are
not of similar length. If the time is too long, the time will miss one turn, and this is easy
to recognize on the scope.

/O update is usually the first thing to do after synchronization, in order to avoid some
jitter which could be listen or disturb a stepping motor or a PWM ratio. Port bits usually
control different actions and are updated by different tasks. Updating is made by the
different tasks in a register, copied to the port before the tasks introduce their jitter.

Updating time counters is usually the next task. As it can be noticed in our example,
a task is longer when there is a next task to be prepared. If too many instructions, it can
be split in two subtasks executed on two consecutive 100 us phase.

Synchronous programming has some similarity with the “virtual peripheral” concept of
Scenix, but the implementation is quite different. Let us see several examples and build our
library of tasks handling.

4. Programming techniques for synchronous programming

4.1. Time counters

Long times can be measured with counters incremented every phase. C100u is our first
counter, incremented every 100 us. As an 8-bit counter, it counts by 256 and overflow
every 25.6 ms. We can test the zero to increment a C25m counter every 25 ms, that will
overflow after 6.3 sec.

The instruction we have to write are:

10:14:59 28/04/01 8830 @TYPO:#MMI:@TYPO:#MMI:DOPISYNC.TF 3

RIC324

Synchronous programming -4 - “DIDEL. Jan 2001

IncSkip,EQ C100u
Jump Nxt
IncKip,EQ C25m
Nxt :
If we need within a task to measure a duration, we can define a variable “Time” do
as for the HC11 timer:
; At begin of task:

Move C25m, W
Move W, Time

; At end of task:

Move C25m, W

Sub Time, W

. result in W is the time duration in ms (max. 6.3 s).
If we need long delays, a 1 sec counter Cls going up to 256 s may be preferable to

a 6.3 s counter. It is easy to implement with a C25m counter that counts by 40 (and not
256). The trick valid for divide by 10 counters (PICSmart section xx) is applied here for
the divide by 40 counter.

IncSkip,EQ C100u

Jump Nxt

TestSkip,BC C25m :#2 ; Test if 10100 = 32+8

TestSkip,BS C25m:#4 ; in order to divide by 40

Jump Nxt

Inc Cls ; 1 second counter
Nxt :

The 1 second period is not very precise. We can adjust within a 4% precision changin

Inc C100u

Move #250,W

Xor C100u,W ; Compare for equality

Skip,EQ

Jump Nxt

Clr C100u

It is more efficient to use a down counter:

Move #250,W
DecSkip,EQ C100u
Jump Nxt

Move W,C100u

4.2. Split tasks

A typical task, for instance blinking a LED in response to an external event, supposes
to check for an event and then blink a certain number of times with the correct duration. If
the processor has nothing else to do, it is easy to program with waiting loops, as explained
in Picsmart.

Now, if we want to do other tasks in parallel, we can split the work and execute it
every 100 us, for a duration up to 20 us for instance (max 20 instructions). This leaves
the space for 4 other tasks that will also be served every 100 us.

The first task, wait for a flag active, will use only 3 instructions. Blinking the led is a
slow process. A LED duration counter will decide how many times 100 us the LED is ON
and how many times the LED is OFF. Another counter will count the blinks. Hence, the
subtasks to be executed every 100 us phase are the following.

BTaskO : Test the flag.

If zero, continue

If one, LED on, prepare LED on duration counter and number of blinks counter, switch to BTask
BTask1 : Test LED duration counter

If ><@, continue
If =@, LED off, prepare LED off duration, switch to BTask2, continue
BTask2 : Test LED duration counter
If ><@, continue
If = @, decrement number of blink counter
If = @, switch to BTask®, continue
If = @, LED ON, prepare LED on duration, switch to BTask1, continue

JON-DIDEL 16:14:53 28/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPISYNC. TF 4

Synchronous programming -5 - “DIDEL. Jan 2001

4.3. Selecting the subtask

It is specially easy with the PIC to select the task to be executed. A task pointer
BTask is initialised to zero and can then be incremented/decremented/cleared at the end of a
subtask, so the new subtask will be executed at the next 100 us phase.

The switch is written

Move BTask ,W
Add W,PCL
Jump BTask®
Jump BTask1
Jump BTask2

This takes 4 microseconds for any number of tasks.

5. Blinking program

Let us write and test a synchronous program that blinks 4 times a LED every 3
seconds. The “interrupt” every 3 seconds is provided by a Bspace decounter that is
decremented when C25m is incremented, every 100 us. Bspace is initialized at
3000ms/25ms= 120 and sets a flag when it reaches zero. There is no need for other
subtasks and we will save the 4 microsecond of the task switch and the task variable.

5.1. Final program

The complete program (next page) must document the port used for the LED, the
variables and the modules. Parameters are defined in the top of the listing, so they are
more easily changed to test their effects. Their preferred place is next to the variables they
are related to.

There are several comments to give about this program. The bBlink flag is indeed not
required. It is here to show the general scheme of activating a flag in one task, testing it
and clearing it in another task. A simpler solution would be to have a BTaskOO task, with
only a Jump BNext instruction, add a BTaskO1 task, with the preparation of the blink.
When the 3 sec are over, it is enough to increment BTask to start the blinking operations
100 ps later.

CLedOn and CLedOff counters are not used at the same time; a single ClLed counter is
enough. CBlink counter could also be mapped on the same variable, but this would mean

that the space between two set of blinks will be constant, and not the period of the set of
blinks.

One can notice that macros have been defined for 1/O actions. It makes more easy the
transfer from one application to another, from one processor to another, if the 1/0 ports are
not explicitely mentionned within the program.

RIC324 JDN-DIDEL ~ 16:14:53 28/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPISYNC. TF 5

Synchronous programming

Picgs5.asm |
. Title picgs5 jdn 24.7.99

Blink 4 times every 3sec

.proc 16F84
00“3*8”* ICledOn = 100/25; 0.1s
| CLedOff = 250/25 ; 0.25s
1 CBlink = 4 ; Number of blinks
| CSpace = 3000/25 ; every 3s
"a“iab'es .Loc 16°C
C100Qu: 16 1 ; Counter 10
C25m: 16 1 ; Counter 25
BTask : 16 1 ; Blink task
CLedOn: 16 1 ; LED on cou
CLedOff : 16 1 ; LED off
CBlink : 16 1 ; Number of
Cspace: 16 1 ; Space count
Flag: .16 1 ;Flag reg for ut to 8 fla
bBlink =0
"a'"‘ab'“ | Option = 2°00000001 ; Div b
| Timer = 256-(100/4)+1 ; 100 us
\lariables LEDs
bLed = 0 ; Blinking LED on RBQ
MDirB = 2° 0000000 ; Cutputs
InitB = 2711111111 ; LED off
.macro L edOff

Set PortB : #blLed
.endmacro
.macro LedOn

Cir PortB : #blLed
.endmacro
\lariables Exec time on RAO
bSO =0 ; Syncho oscillo
MDirA = 2711110 ; RA® out
InitA = @
.macro SQOff

Cir PortA: #bS0
.endmacro
.macro SOO0n

Set PortA: #bS0
.endmacro

Initialization | | ..o

Move #MDirA, W

Move W, TrisA

Move #InitA, W

Move W, PortA

Move #MDirB , W

Move W, TrisB

Move #InitB , W

Move W, PortB ; Leds all off

Clr C100u

Cir C25m

Move #| Option , W ; Prescaler :4

Move W, Option

Move #| Timer , W ; 100 us

Move W, TMRO
; Init BTask

Cir BTask
; Init STask (action every 3 sec)

Move #|CSpace ,W

Move W, CSpace

100 us loop |

Loop: ; Cycle 100 us
SQOff
W$: Move TMRO , W

Skip,EQ

Jump w$

RIC324 JDN-DIDEL 16:14:53 28/64/61 8830

QTYPO:#MM1:@TYPO: #MM1:DOPISYNC. TF

6

Move
Move
SQO0n
IncSkip , EQ
Jump
; Every 25 ms
Inc
Dec
Dec
Dec
Next :

#| Timer , W
W, TMRO

C100u
Next

C25m
CLedOn
CLedOff
CSpace

’

“DIDEL Jan 2001

restart for 100 us

Modile Every 3 sec, ask for a bink sequence

STask :
Test CSpace
Skip,EQ
Jump SNext
; Reinint CSpace delay and prepare for Blink task
Move #|CSpace ,W
Move W, CSpace
Set Flag: #bBlink
SNext :

Hodle Blink n times

Move BTask ,W
Add W,PCL
Jump BTask®
Jump BTask1
Jump BTask2
BNext :
; No more task to execute
Jump Loop
Module Blink a Led (parameters in the beginning)
BTaskO : Wait for blink flag
TestSkip,BS Flag:#bBlink
Jump BNext
; Prepare for the blinking
Cir Flag: #bBlink
Move #|CBlink ,W
Move W, CBlink
Move #|ClLedOn,W
Move W,CLedOn
LedOn
Inc BTask
Jump BNext
BTask1 : Keep Led ON
Test CLedOn
Skip,EQ
Jump BNext
; Initialize for LED off
Move #|CLedOff , W
Move W, CLedOff
LedOff
Inc BTask
Jump BNext
BTask2 : Test if finished, blink again if n
Test CL edOff
Skip,EQ
Jump BNext
; Test if good number of blinks
DecSkip,EQ CBlink
Jump BT2
; Yes, finished
Cir BTask
Jump BNext
; No, reinit one blink
BT2 : Move #|ClLedOn,W
Move W,CLedOn
LedOn
Dec BTask
Jump BNext
.End

JDN 1998

