RIC324

JON-DIDEL

J.D. Nicoud, Mouette 5

-
CH-1092 Belmont, Switzerland T’DE‘

Tel +41 21 728-6156, Fax 728-6157
Email info@didel.com, www.didel.com This file: www.didel.com/doc/Dopicl2C.pdf

12C / SM-Bus PIC routines for PIC 16F84, 16F870,

Table of content

1. Igtroduction 1 7. Appendix (Web names are case sensitive)
2'2 1 Eg|a§£'nc'ple and macros g 7.1 I2C macros, routines and test
: rograms
2.2 Start and Stop 2 Prog List: www.didel.com/doc/Xi2c.html
%Z g't selection g Variables www.didel.com/doc/Xi2cV.asi
5% sag_ttlon it 3 Macros www.didel.com/doc/Xi2cM. asi
5 8:b=t :\galde 3 Routines www.didel.com/doc/Xi2cR.asi
57 Acknowledge] ~ Test simple write
58 Basic 120 protocle 4 www.dldel_i_cezcsngn/doc/X%cél'FO.asm 8574
g.?oll'rggtﬁtwantthne()t\?vri?cg \r’gﬂgglees g www.didel.com/doc/Xi2c8574.asm
3. 12C m%in features 5 7.2 Short delays macros
31 Transactions 5 List: www.didel.com/doc/Xdel.html
32 Addressing 6 ~ Macro and routines
4. 12C routines 6 www.didel.com/doc/XdelR.asi
5 /O expander PCF 8574 8 Test program www.didel.com/doc/Xdel.asm
6. EEPROM 24C01 8 7.3 Long delays routines
List: www.didel.com/doc/Xdelai.html
Macro and routines
www.didel.com/doc/XdelaiR.asi

t program
www.didel.com/doc/Xdelai.asm

1. Introduction

I°C has been proposed by Philips as an efficient way of having a processor controlling
a set of 1/O devices over 2 signal lines. It is used inside PCs mostly for reading
temperature sensors and power controller, and has been renamed by Intel as the SM-Bus
(www . sbs—forum.org/smbus/specs/).

Multi-master transfers are possible, but our objective here is only to learn how to
control existing 12C circuits, and program a PIC as a slave. We will not explain all the
features of 1°C Those having undersood this document will be ready to read Philips or
SM-Bus documentation.

This note shows how to use I°C transfers on Microchip PIC processors which do not
have dedicated hardware for this. From the examples | have seen, it is indeed easier to use
our routines than to understand and program the IC control registers of a 16F76 or
16F877. So, unless you have to be multitask and are ready to spend a lot of time learning
to handle correctly a set of interrupts, consider using our simple routines.

We first explain the 12C timings and how to implement them with macros and routines.
We show how to use them with two 1°C circuits: the PCF8584 parallel port interface and
the 24C01 EEPROM. A simple PIC as a slave (a low cost 12C508 for instance) adds some
timing constraints and requires to slow down the transfer down to 10 kBit/s.

We use CALM assembly language notations. CALM (Common Assembly Language for
Microprocessors) has been developed at the EPFL since 1976 and supports 15 processors
with a simple explicit orthogonal syntax. CALM is close to Motorola notations, with more
explicit addressing modes. For programmers with Intel or AVR experience, several differences
(order of operands, mnemonics) make the transitions more difficult. For beginners, CALM has
proven its efficiency, due to its explicit syntax: when Microchip writes btfsc Reg,bit one
should remember that this mean “Test in register eg” the bit “bit” and Skip if this bit is
set. CALM writes TestSkip,BS Port:#bit which means exacly this. CALM uses the # sign
for immediate addressing instead if a “i” letter in the mnemonic. The number of instruction
mnemonics is greatly reduced, the addressing mode being very explicit. Going from one
processor to another is easy, since only the specificity of the architecure and a few special
instructions have to be learned.

For those not familiar with CALM, but having some experience with the PIC, the
reference card available at www.didel.com/doc/Pic84Calm.pdef lists the instructions in both

12:03:43 07/04/01 8830 @TYPO:#MMI:@TYPO:#MMI:DOPICI2C.TF 1

RIC324

I’C PIC routines “DIDEL_ April 2001

notations.

For those without experience with PIC, but with a good understanding on
microcontrolers and assembly language, a detailed document in english is available at
www.didel.com/doc/Pic84E.html. For absolute beginners, we have the PICGénia/
documentation in french (www.didel.com/PicGenial.html)

2. I12C principle and macros

When sending an 8-bit word in serial, Start Data bit Stop
one needs to know when the data starts
and when it stops. The great idea of 1°C is
to use 2 lines, one for the clock (so there SDA
is no precise bit rate to select) and one for
the data. Valid data must be stable when
the clock is at level one. Start and stop @iz
bits result from a violation of that rule, easy i
to generate and decode. In order to
simplify, we take all the long timings to 5

Us.
2.1. Delays

At 4 MHz, the SDA to SCL delay of 250 ns will result from two consecutive
instructions for processors up to 16MHz. Short delays are generated by Nop instructions,
which takes 1 us at 4 MHz. The instruction Jump APC+1 takes 2 us since it jumps to
the next instruction (APC is the assembler program counter value), and takes more time due
to the instruction pipeline being broken. The following macros generate the delays we will
need.

SCL

>4.7
h >4 ps >4.7ys ‘us

Fig. 1 FC principle and timings

.Macro Nop2 .Macro Nop3 .Macro Nop3
Jump APC+1 Nop Nop
. Endmacro Jump APC+1 Jump APC+1
. Endmacro . Endmacro

If you have a faster processor, the xDel macro and routine in appendix
(www .didel.com/XDelM.asm and www.didel.com/XDelR.asm) is an elegant way to generate
delays between 1 and 20 instruction cycles (or more if you add instructions in the XDly
routine). The macro inserts a maximum of two instructions and the associated XDly routine is
quite short and does not use any register or modify W.

2.2. Start and stop

Now we can control the delays, it is easy to generate the sequence (these are not
the definitive macros, see later).

.Macro Start .Macro FullSCK .Macro Stop
CIrSDA ; SDA """\..... SetSCK ; SCK .../ ""\.. CIrSDA
Nop4 Nop4 Nop
ClrSCK ; SCK """ "~ \. ClrSCK SetSCK ; SDA /7
Nop2 . Endmacro Nop2
.Endmacro SetSDA ; SCK ../ """"~
. Endmacro

The function of CIrfSDA and the other macros referred inside these macros is evident.
How to implement them? The naive way would be to initialize two ports bits as output, and
set or clear these bits. A special handling would be necessary for read transfer and
acknowledge. 1°C bus is specified as open-collector and we have to do it for the SDA line
at least in order to avoid from time to time a short circuit between the master and slave
SCL outputs. Open collector means that the zero are active, but not the ones; pull-ups will
assert the one. This is easily implemented on portA for instance by initializing the port to
zero, and playing on the direction to get an output at level zero and ones: When a port
line is initialized as output, a zero is active. When the port line is initialized as input, the
pull-up resistor sets a one (if no other output on the bus forces a zero).

JON-DIDEL 12:63:43 87/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPICI2C.TF 2

I)C PIC routines

2.3. Bit selection

“DIDEL_ April 2001

Let us define bSCL and bSDA the bit number of the port, and Portl2C the port on
which the two lines are wired (the same port is highly preferable). For instance, if SCL and
SDA are connected on PortC bits 3 and 4 of the 16F870 (to be compatible with an
hardware implementation on the 16F876), one should declare:

bSCK =3
bSDA = 4
DirC = 210011001 ; bits 3 and 4 are important
Port12C =7 ; PortC
Trisl2C =7 ; Bank1 TrisC
2.4. Caution

Before any call of a I2C macro or routine, one should be sure that the Portl2C bits

bSCL and bSDA are at zero.

If there is no interaction with another 1/O using the same

port, the bits are initialized in the beginning and will stay, but pay attention with the Set

bit and Clr bit of other bits on the same port!

We can write now the basic macros for changing the lines. These macros have to be

executed in register bank 1.

This will be under the control of the Start and Stop

conditions, hence the above routines will be modified. It is important that wireing constraints
do not appear in any macro or routine. The macro and routine files must be applicable to
any PIC processor and any wireing option, with the only constraint that SCL and SDA have

to be on the same port.

.Macro SetSDA ; SDA= 1 and Inp .Macro SetSCK ; SCK = 1 .Macro FullSCK
Set Tris |1 2¢c : #SDA Set Tris 1 2¢c : #bSCK Nop
. EndMacro . EndMacro Set Tris|2¢c : #SCK
.Macro CIrSDA ; SDA = 0 if outp .Macro CIrSCK ; SCK = 0 Nop4
Cir Tris | 2c : #bSDA Cir Tris|2¢c : #SCK Cir Tris|2¢c : #SCK
. EndMacro . EndMacro Nop
. EndMacro

We repeat that one should be careful with open-collector programmed lines. A Set or
Clr on another bit of the same port will read the byte on Portl2C, modify the assigned bit,
and write the byte. This mean that if SCL for instance is one on the line, it will be copied
in the port register, and the line will go to one when selected as output. The clock line

will stay at one and no more clock will appear!

2.5. 8-bit write

The module to write 8 bits prepared in the ADi2c register is quite similar to all serial
transfer modules (fig 2). Register AdI2C will contain addresses or data, hence its name.

o I L VY A VY A VY N VY A VY VY O VY W

SDA Xbit7 X X X X it 3 X X X bit o
SDA B 1 T\ 2 [e e
example 7. Pl
Adl2C Data transferred 16°74
doci2c2 CBit

docize?

Fig. 2 8-bit serial transfer
2.6. 8-bit read

; Write a byte module

in: AdI2C
Move #8,W
Move W, CBit

L$: RLC ADi2c
Skip,CC
SetSDA ; Carry = 1
Skip,CS
CIrSDA ; Carry = 0
FullSCk
DecSkip,EQ CBit
Jump L$

The module to read a byte is quite similar: the data line is tested when the clock is
active and copied into the AdI2C register via the Carry. In order to test the SDA bit, one
have to switch back to bank O for the time of the test. Macro Bank1toO correspond to the
instruction Clr Status:#RPO and the other is a Set.

RIC324 JDN-DIDEL 12:63:43 67/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPICI2C.TF 3

I’C PIC routines “DIDEL_ April 2001

;Read a byte TestSkip,BC Port12C:#bSDA; SCK a 0
out: AdI2C = W SetC
Move #8,W RLC ADi2c
Move W, CBit BankQto1
SetSDA FullSCK
L$: DecSkip,EQ CBit
CirC Jump L$
Bank1to® Move Adl2c,W

2.7. Acknowledge

An interesting feature of I°C is the unit receiving the data has to send a positive or
negative acknowledge. This occurs immediately after the 8 data clock. The sender leaves the
data line at one and the slave generates a zero (Ack) or leaves the line at one (NAck).
The sender generates a clock, during which it reads the data line and sees if a unit is
replying (Ack) or not (NAck), which may mean that the receiver is not here, or can
not/will not accept any more data for this transaction.

2.8. Basic 1?C protocol

An I2C write transfer consists of a start condition, 8 data bits, and acknowledge and a
stop bit, as shown in Fig 3. The acknowledge is activated at the negative edge of the last
data clock, before the sender has deactivated its possible zero. Hence the importance of an
open collector, to avoid a “short circuit” visible on the scope as a medium level, without
consequence on the correct transfer operation, as long the collision has desappeared when
the next clock is active. The sender takes then again the control to generate the stop
condition.

SCL

=
X it o

SDA

SDA \ e [1 T\ @ [T\ o [
example /‘I /_,
Adl2C ﬁ_ XXXXXXX
) Under receiver
dosized (a7] cai control

" Fig. 3 Basic write transfer

With our macros, all the transfer must be executed on register bank 1, and the best is
to include the bank switching in the start and stop macros. The main program will stay in

bank O.
The corrected Sart and Stop macros are

.Macro BankOto1 .Macro Start .Macro Stop

Set Status : #RPO Bank®to1 CIrSDA
. Endmacro CIrSDA ; SDA "7 \. ... Nop
.Macro Bank1to® Nop4 SetSCK ; SDA /

Clr Status : #RPO CIrSCK ; SCK 777777 \ Nop2
. Endmacro Nop2 SetSDA ; SCK ../

. Endmacro Bank1to®
. Endmacro

The routine to write a byte on a |2C slave uses ADi2c as input and the carry bit as

output.
Routing Write a byte and test acknowledge
in: ADi2c address or data SetSDA i An Ack is expected
out: Carry = 0 if Ack, Carry = 1 if NAck CIrC
Wri2C: Bank 1to@ ; Acknowledge test
Start , , TestSkip,BC Port|2C: #SDA
Move #8 ,W ; Transmit ADi2c SetC
Move W, CBit BankQ®to1
L$: RLC ADi2c FullSCK
SetSDA ; Carry = 1 CIrSDA
Skip,CS Ret
CIrSDA ; Carry = 0
FullSCk

DecSkip,EQ CBit
Jump L$

RIC324 JDN-DIDEL 12:63:43 67/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPICI2C.TF 4

RIC324

JON-DIDEL

I’C PIC routines “DIDEL_ April 2001

2.9. Important note on variables

The two variables we use, ADi2c and CBit are accessed inside the routine at a time
bank 1 is active. It is of no importance on the 16F84, since the access to variables does
not depend on the bank. But on the 74C76 or 76C87x, there are different variables on
bank O, 1, 2, 3. However, variables at addresses 16°70 to 16°FF are identical on all
banks, and this is the place we have to define our 12C variables.

2.10. Testing the write routine

A scope or any I°C slave circuit can be used to test our routine. Let us suppose that
this slave is 16°70. Let us also have a LED on e.g bit O of PortB to show if there is an
acknowledge or not. The program that writes continuously on the slave chip is given below,
and available on www.didel.com/doc/Xi2cTO.asm. This program insert the [2C macros and
the write routine Xi2cWR.asi, explained in previous section. In the future, all our I1°C
routines will be put inside a Xi2cR.asi file, and what will be important to check every time
a routine is called are the parameters in, out and modified, and of course its functionnality.

i Xi2cTO Simple write test Programme

280301 .Loc 0 ; program start

’

.Proc 16F84 Deb: Move #DirA, W
RBO =5 ; bit on Status register that control Ba Move W, TrisA
PortA Move #DirB , W
bSCK = 0 ; 12C bits Move W, TrisB
bSDA = 1 Cir PortA ; important for SCK SDA
DirA = 2700011 ; Bits @ and 1 as input Loop: Move #SlaveAddress , W
Port12C =5 ; 12C bits on Call Write 12C
Tris12C = Porti2c Skip, CS
SlaveAdress = 16770 ; 8574 | /0O expander LedOn ; Ack
.Ins Xi2cM.asi ; Inserts 12C macros Skip,CC
PortB LedOff ; NAck
bLed = 0 ; Led bright if output=0 Jump Wait ; space on the scope
DirB =2"00000000 ; Bit @ as output ; to ease synchronization
-MacroLedOn Jump Loop
Clr PortB : #bLamp . Ins Xi2cQ.asi
. Endmacro
Macro L edOff Routine 1ms wait
Set PortB : #bLamp Wait: Cir \J
. Endmacro W$: Add #-1,W ; 4 us loop
Variables Skip,EQ ; repeated 256 times
.Loc 16°0C ; begin of variables Jump w$
CBit: .Blk.16 1 Ret
ADi2c: .Blk.16 1 .End

If the 1°C slave (here the 8574 described later, but any 12C chip can be used it the
SlaveAddress is correctly declared) is correctly connected and powered, the LED will bright.
By disconnecting SCL or SDA, or will not. Have also a look with a scope. For adjusting
the timings and for any real time programming a scope, even an old one, is essential.

3. 12C main features

As mentionned above, we will not detail all the I?C features. Most applications just
control several 1°C slaves and we want to do it in a simple and efficient way.

3.1. Transactions

The write transfer we have seen is drawn in a simplified way on Fig 4 a). It selects
a slave, and has no other application than an existence test.

The simplest 1°C slaves (Fig 4 b) accept an 8-bit data word and can provide an 8-bit
information back. This is the case of the PCF8574 parallel port we will see later. Reading
needs to repeat the address, with the least significant bit (the R/W bit) set to one. All 1°C
addresses are even. The read transfer sequence is double: a write transfer to write the
selected register, and then a write cycle with the read address, followed by a read cycle.
Start/Stop can be used for both transfers, but a slightly shorter Restart condition can be
used inbetween.

12:03:43 07/04/01 8830 @TYPO:#MMI:@TYPO:#MMI:DOPICI2C.TF 5

I)C PIC routines

More complex I2C slaves

6

“DIDEL_ April 2001

have a set of 8-bit registers. The register is selected before

sending the data (Fig 4 c). Read transfers are terminated by a NAck, to mention the master
the transfer is complet. The reason for this is multiple data transfers can be done in the

same transaction (Fig 4 d).

An EEPROM or a RAM
byte that can be read or
counter, and consecutive

written.
locations

for instance has an address register which points to a data
A data transfer increments automatically the address
can be transferred (bloc transfer). There may be

limitations on the length of the bloc, and delays after writing, in the case of an EEPROM.
Other I2C circuits, e.g. a real clock, are indeed similar; they have many registers, which

can be addressed independantly, or in sequence as a block transfer to consecutive
addresses.
___ from master -
a) [st| AdSlave | 0] Ack[Stp] Simple write (test)
,,,,,,,,,,,,,, fomstave . ..
b) [stef] AdSlave | O] Ack| Datal2C | Ack[Stop] Write single register
(s]grﬂ”iAidisie;viei]iﬂ Ack| Datal2C |77A;k7‘87h;p7‘ Read single register
c) [Sei] AdSlave | O] Ack| Regl2C | Ack| _Datal2C _NAcKStop] Write addressed register
(e[RSt [Ak T Jresin [AiSTais [1] Ak DI [Wilses] Read addressed register
d) [Swi] AdSlave O] Ack| Regl2C | Ack| Datal2C | Ack| Datal2C | Ak| Datal2C _|Nad{sis] Write block
BT R B T R LT T I T Y W e Y 0 o TR
R/W bit=0 o RAWBI=T T "Read block
doci2c
doci2cd . 2
Fig. 4 [FC transfer sequences

3.2. Addressing

I2C addresses are 7 bits

on bits 7..0. Bit 0 is a Read/Write indication: read addresses

are odd. Many I°C circuits take the 2 or 3 low address bit on circuit pins, in order to
hardwire these address bits and support several identical chips in parallel (or try to avoid an

address used by another slave)

4. 12C routines

In order to be compatible with different addressed devices and different transaction formats,
we have defined a set of routines which make the code as flexible and short as possible.
One needs to define 6 registers at bank-independant addresses:

CBit: .BIk.16
Ad12C: .Blk.16
AdSlave : .Blk.16
Reg|2C: .Blk.16
Datal2C: .Blk.16

AdSlave must be loaded

—

with the slave address. It has to be reloaded by the 2

instructions below only when it is necessary to select a new slave.

Move
Move

#AdNextSlave ,W
W, AdSlave

Regl2c is the first byte written, usually the register address, Datal2c is the data. The
write low level routine uses ADiZc register.

The source code of our

we recommend their reading,

is not detailed here;
understanding if the

routines {www.didel.com/doc/i2¢c.html)
but they can be used without their

parameters they need are correctly prepared.

Rou’(ine Send the slave addresse, the register internal address and the data

; A block of data may follow. A Stop

in: AdSlave slave address

in: Regl2C register address
in: Datai2c dats written
mod: W, ADi2c

RIC324 JON-DIDEL 12:63:43 67/64/61 8836 @TYPO:#MMI1:@TYPO:#MM1:DOPICI

must terminate the transfer.

20.TF 6

RIC324

I2C PIC routines -1 - DIDEL April 2001

Routing:| Writel2C | Send address or data

in: ADi2c byte to be transmitted
out: Ca”X = 17if Ack = 0 if Nack
mod: W, ADi2c

Routing:| StartRead | Select a register in a esclave and reselect for a data read

; An Ack or Nack must be given. A data block may follow. A Stop must terminate.
in: AdSlave slave address
in: Regl2C register address
out: W = Adi2c data read
mod: W, ADi2c
Rottine:| Readl2C | An Ack or Nack must be given. Plus a Stop if last read

in: AdSlave slave address
out: W = ADi2c data read
mod: W, ADi2c

Rautie:| GiveAckR | Master acknowlege after a read
mod: -

Routing| GiveNAckR | Negative acknowledge

mod: -

Routine:l GiveNAckStop | Negative acknowledge and stop condition

mod: -

Routing Routine Start

mod: -

Roiltirie Routine Stop

mod: -
The StartR, StopR routines have the same effect as the Start and Stop macros, but
they insert only one byte of code.

Transaction of Fig 4 b) are not supported, since our routines have been optimized for
complex 1°C circuits. For this case, new routines have to be written, as shown in next
section.

Transaction of Fig 4 c) is programmed as below.

For writing:
AdSlave OK, load Regl2C and Datal2C
Call StartWrite
Call StopR
For reading:
Load AdSlave, load Regl2C
Call StartRead
Call GiveNAckStop
The data read is both in ADi2c and W

Transaction of Fig 4 d) is programmed as below.

For writing:
AdSlave OK, load Regl2C and first data in Datal2C
Call StartWrite
Load second data in Datal2C
Call Write12C
Load third data in Datal2C
Call Write12C
Call StopR

For reading:
AdSlave OK, load Regl2C
Call StartRead
Handle first data in W
Call Read|2C
Handle second data in W
Call Read|2C
Handle third data in W
Call GiveNAckStop

The data read is both in ADi2c and W

JON-DIDEL 12:63:43 87/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI1:DOPICI2C.TF 7

I)C PIC routines -8 -

5. Example 1: 8-bit |/O expander PCF 8574

The 1°C 1/0O expander PCF 8574 is easy to implement and convenient to get more
inputs and outputs from a microcontroller system. The Max 1608/Max1609 circuis have a
quite similar functionnality. There is no direction to assign, since the outputs are
open-collector: an input is an output at state one.

“DIDEL_ April 2001

The test program below, available with its complete form at
www.didel.com/doc/Xi2c8574.asm, reads 4 switches on the low 4 bits (pull-up are
required) and copies the content on the 4 high bits. Simpler write and read routines could
be written if there is only one 8574 circuit to be controlled; the 8574 is the only circuit
not requiring internal sub-addresses.

Move #Ad8574 ,W ; Declared as 16740 to WrSingle 12C:

Move W, AdSlave Move AdSlave ,W

Move #2° 00001111 ,W Move W,ADi2c

Move W, Datai2c ; Data direction initialize Start

Call WrSingle12C Call Write | 2C

Loop: Stop

Call RdSingle|2C ; Result in W and Datal Ret

Swap Datal2C,W RdSingle2C:

Or #2° 00001111 Move AdSlave ,W

Call WrSingle 12C Move W,ADi2c

Jump Loop Start
Call Write 1 2C
Call Read|2C
Call GiveNAckR
Ret

6. Example 2: EEPROM 24LC0O1 128x8

The 24LCO1 from Microchip is an 8-pin circuit (also available in a miniature 5-pin
package) that stores up to 128 bytes of data. There a single control register, the address
pointer that defines where the next data will be read or written. This address pointer is
incremented after every read, and the reading is immediate. For writing one location at a
time, a programming time of 10ms must be respected (the circuit will not acknowledge a
transfer during this time). Block write are efficient, but one needs to understand their
limitation: The EEPROM block is structured as 16 8-byte blocks and has an 8-byte input
buffer. Within the same block, one can do a block transfer of 8 byte maximum, if one
stays inside the same block (the autoincrement concerns only the 8 low bit of the address
pointer). If the complete memory has to be written, it is hence necessary to reload the
address pointer every 8 bytes. The interest of that feature is to program up to 8 bytes with
a 10 ms programming time.

The routine we have defined are ideally suited for this case. A single position write
and a read are programmed as below.

Write : Read :
Move #Ad24LCO1 ,W Move #Ad24LCO1,W ; If not
Move W, AdSlave Move W, AdSlave ; done before
Move #eeAddr1 ,W ; Selected eeprom addres Move #HeeAddr1 ,W ; Selected eeprom addres
Move W,Regl2C Move W,Regl2C
Move #Datal ,W ; Usually a variable Call StartRead
Move W,Datal2C Call GiveNAckStop
Call StartWrite result in W and ADi2c
Call StopR

Reading or writing a block can be done by calling the routine Readl2C or Writel2C
before the StopR. For instance, the module to read NN bytes from Addr1 is given below.
One notices that intermediate read gets an Ack, but the last read gets a NAck.

BlockRead :
Move #Ad24L.CO1 ,W ; If not done
Move W,AdSlave ; done before
Move #HeeAddr1 ,W ; Selected eeprom address
Move W,Regl2C
Call StartRead
Move NN-1 ,W ; NN is the block lengh
Move W,CBlock ; CBlock variable to be defined
L$:
data available in W and ADi2c
Call GiveAck
Call Read|2C

RIC324 JON-DIDEL 12:83:43 07RPRPKIRWE QrsBhecHervo: am noricizc. 17 8

2C PIC routines -9 - DIDEL. April 2001

Jump L$
last data available in W and ADi2c
Call GiveNAckStop

7. Appendix

7.1. 12C macros and routines

Following files, referred in www.didel.com/doc/Xi2c.html will help you to execute the
test programs and use our .asi files for you own applications.

- Xi2cV.asi includes definitions and variables. Definitions will be copied in your program,
or inside an imported file that defines your hardware.

- Xi2cM.asi are the macros.

- Xi2cR.asi are the routines

7.2. Short delays macro and routine

File XDelR.asi (www.didel.com/doc/XdelR.asi) has to be inserted after the beginning of
the program if macros are called by the program, which we do not recommend in
applications, but it is of course the case in the test program Xdel.asm.

For instance,

Del 3 produce the code: Del 7 produces the code
Jump APC+1 Nop
Nop Call Del7

7.3. Long delays routines

File XDelaiR.asi (www.didel.com/doc/XdelaiR.asi) includes two routines for short delays
{unit 100 us) and long delais (unit 20ms, max 5 sec). Test program Xdelai.asm blinks a
Led.

RIC324 JDN-DIDEL 12:63:43 67/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPICI2C.TF 3

