J.D. Nicoud, Mouette 5

-
CH-1092 Belmont, Switzerland T’DE‘

Tel +41 21 728-6156, Fax 728-6157
Email info@didel.com, www.didel.com Fichier: www.didel.com/doc/DopicSer.pdf

RS232 routines for a PIC
1. RS232 interface

RS232 is based on precise timings, with a start bit to synchronize the transmission of
a byte. Signals are specified for -12V/+12V levels, but most PCs accept 0/+5V levels.
The Didel document www.didel.com/doc/Doc232.pdf provides several electrical interfaces
between a microcontroller and a RS232 plug.

RS232 driver Lss MSB
+5 to +12V
o RxD 2 TxD
ond_ || OV Pe 4 TXD
n 7 .
— 4 o _| | | | | |v|)| | | I/ Microcontréleur
5 to <12y Eg TxD 3 Rx D
le]
Stop bit Y Gnd Gnd| .)
Start bit op X! Logrond 2 o Start bit Stop bit

9-pin plug
doc232a Male on PC side

Doc232a

Fig. 1 RS232 signals

2. Send/receive routines

Several cases have to be considered for the basic send and receive routines that
transfer an 8-bit word, usually an Ascii code. On the Pic 16F84, a software routine has to
be written, and if processor oscillator is a quartz or resonator, precise timings are easy. On
a F84 with RC oscillator, and on the low cost 12C508 controllers, precise timings ask for
additional solutions. The 16F87x and other controllers have a wired serial interface (the
UART) and a bit rate generator. It makes the life easier and the program more efficient,
specially when data in is expected. Interrupt is also possible, but we will not detail the
interrupt handling, which is easy in simple cases, and becomes rather complex when real
time kernel and fifo have to be implemented.

2.1. Send routine for 16F84

If the F84 (or any processor of the PIC family) has a 4 MHz quartz or resonator, a
delay routine will take care of the timings. One could use the timer, but there are better
usages for it.

For the SndSer routine we need a delay loop of 4 us repeated RateAdjust times. The
bitrate period is R9600 = 10000000/9600 microseconds at 9600 bit/s (104,5 pus). Hence,
RateAdjust = (R9600-9)/4, 9 being the estimated number of instructions (of 1 us that will
be executed between two waiting loops. By leaving the assembler doing the calcuation, it
will be easy to change the bit rate (or Baud rate, the incorrect widely used word). At
9600 bits/s, the routine takes 1,15 ms to be executed.

The SndSer routine takes the data to be sent in W and load DataSnd variable, who
will play the role of shift register. The Carry is cleard to send the start bit, and then Carry
is set to fill the end of the data to be transmitted with stop bits. Hence 11 cycles are
required, counted by the CSnd variable.

L$: Add #-1,W
Ruutine 8-bit serial transfer Skip,EQ

inn W Jump L$
mod: DataSnd, CSnd SetC ; prepare Stop bits
SndSer : RRC DataSnd
Move W, DataSnd Skip,CS
SerOff ; Start bit SerOff
Nop ; More precise start bit duration Skip, CC
Nop SerOn
Move #11,W DecSkip ,EQ CSnd
Move W,CSnd Jump s$
S$: Ret
Move #RateAdjust ,W ; Calibrated wait

The SerOn SerOff instructions are macros. One should not mention in a general routine
which bits should be activated. If TxD is wired on RAO and RxD on RA1, one will declare

RIC324 JDN-DIDEL 18:43:66 67/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPICSER. TF 1

RIC324

JON-DIDEL

RS232 routines -2 - “DIDEL_ April 2001

in the port definition part of the listing
PortA definitions

bTxD =0

bRxD =1

DirA = 11110 ; Last two bits are input and output
PortSer =5 ; PortA address, 6 for PortB, 7 for PortC

Macros can now be defined:
.Macro SerOn

Set PortSer : #bTxD
. Endmacro
.Macro SerOff

Clr PortSer : #bTxD
. Endmacro
.Macro StopOn

Set PortSer : #bTxD
. Endmacro

The macro StopOn will be used at initialization, otherwise the first characters to be
sent may be wrong if the TxD bit is zero after reset. One more thing to define are the
variables: DataSnd and CSnd.

A test program (www.didel.com/doc/Xser.asm) can easily be written around this
routine. It sends characters * and U, the most appropriate to check if the timing is correct.

__ 30.12.00 Serial out ’ilariablesl:l
.Proc 16F84 .Loc 16°C
; PIC at 4MHz DataSnd: .Blk.16 1
R2400= 1000000/2400 CSnd: .Blk.16 1
R9600= 1000000 /9800 .Loc @
R38400 1000000/38400 ; more critical ti

RateAdjust R9600/4-9 Test program |

: Start :
Variables Move #DirA, W

PortA Move W, TrisA
bTxD = @ StopOn
bRxD = 1 ; not used here Loop: Continuous send of * and U
DirA = 2710010 Move #x W
PortSer =5 ; PortA Call SndSer
.Ins XSndM.asi ; Serial macros as above Move #U" W
Call SndSer
Jump Loop
. Ins XSndR.asi ; Serial routine as above
.End

Correct operations and timings can be verified with a scope, or with a terminal. To be
sure the timings are not critical, it is recommended to change the correction in RateAdjust
constant by adding or subtacting 1 (4 us); it should work within this range.

If the 16F84 has a cheap RC oscillator, one can adjust the R9600 constant according
to the measured speed of the processor. If the frequency is higher than 4MHz by 5%, one
should increase the 9600 quotient by 5%.

On the 12C508, the OscCal register allows to adjust more precisely the frequency. A
solution is to load a test program (10 instructions, leaving the first instructions with value
16°FF) and measure the frequency. The R9600 parameter can be adjusted and the final
program loaded. A tricky solution, also suitable for the 16F84, is to measure the start bit
duration of adequate initial characters transmitted by the PC.

One more point. If the electrical interface does not invert (1 diode and two resistors
between the PIC and the PC), only the macros have to be changed, and it will work.

2.2. Send routine for 16F87x

Several registers of the 16C76 and 16F87x allow to program the asynchronous receiver
and transmitter (USART). The Snd routine has fewer instructions, but a correct initialization
of the control registers is required. Microchip documents all this, so we just give below the
initialization routine and the new RecSer routine. TxD is on bit 6 and RxD on bit 7 of
PortC.

18:43:06 0@7/04/01 8830 @TYPO:#MMI:@TYPO:#MMI:DOPICSER. TF 2

RIC324

JON-DIDEL

RS232 routines -3 - “DIDEL_ April 2001

Routine Init serial port at 9600b/s Rouiine Serial transfer for 16F87x

Move #|niRcSta, W in:d w
mod: -
Move W, RcSta SndSer :

Bank 1 Move W, TxRe
Move #IniTxSta, W No . ,no rge uired
Move W, TxSta P ! P req
M #1niSpBrg , W AS:

ove nispbrg, TestSkip,BS PIR1:#TxIF
Move W, SpBrg
Jump A$

Bank® Ret

Clr PIR1

'Rl'eﬁe test program is quite similar to the Xser.asm program above. The SerOn macro is
replaces by a Call IniSer, there is no need of XRecM.asi, and XrecR.asi is replaced by
XSnd7R.asi (see later). The definitions and macros (bank switching) of the 16F870 are
found in www.didel.com/doc/16F870.asi and www.didel.com/doc/16F870M.asi. One can
extract from these files the required definitions and macros, but .Ins macros are quite
convenient for this.

2.3. Receive routine for 16F84

The principle of the routine is to wait for the start bit, and the processor will not be
able to do anything else, even interrupts, while a character is expected from the PC. This
is acceptable for most applications. Macros are defined to avoid the mention of port bits in
the RecSer routine. They make also the routine much more easy to understand.

.Macro Skip | fRxOne
TestSkip,BS PortSer : #bRxD
. Endmacro
.Macro Skip | fStartbit
TestSkip,BC PortSer : #bRxD
. Endmacro
.Macro NoSkip | fStartbit
TestSkip,BS PortSer : #bRxD
. Endmacro
.Macro Skip | fStopbit
TestSkip,BS PortSer : #bRxD
. Endmacro

Once the start bit edge is detected, the first waiting loop waits for one and a half
period before sampling the first bit. After the last bit sampling, a delay of one more one
period reach the stop bit part. This is not an absolute requirement, since when testing the
start bit one test to be sure to be on a stopp bit before waiting for the start bit. If the
received charactes are coming at full speed, on have a maximum time equivalent to the
second stop bit sent by the PC before calling again the RecSer routine. This leave about
100 instructions to handle the data, and it is an important constraint if you do not want to
miss characters.

Ruutine Serial receive for 16F84 at 9600 .. 2400 b/s

; One stop bit (>100 us) to handle data before checking for new data
out: W_= DataRec

mod: CRec
RecSer : ; Wait for Start bit
A$: Skip | fStopBit
Jump A$
B$: Skip | fStartBit
Jump B$
; s@on ; Scope syncro
; sQoff
Lecture des data
Move #8,W
Move W, CRec
Move #(3%RateAdjust) /2 , W ; wait 1-1/2 period
L$:
W$: Add #-1,W
Skip,EQ
Jump w$
;slon ; Sample time
SetC
Skip | fRxOne
CIrC
; s1off
RRC DataRec ; LSB first
Move #RateAdjust , W

DecSkip,EQ CRec
Jump L$
18:43:06 07/64/01 8390 @TYPO:#HM1:@TYPO: #MM1:DOPICSER. TF 3

RIC324

RS232 routines - 4 - “DIDEL_ April 2001

;slon ; stop bit check
W$: Add #-1,W ; wait end of last bit
Skip,EQ
Jump wW$
; s1off
Move DataRec ,W
Ret

For testing the routine one can display the incoming character code on PortB, and as
before change the RateAdjust value to verify the security margins. An Echo program will
send back to the terminal the characters received. If it does not work, a scope is required.
It is synchronized by SO, and a maintained key on a PC provides an adequate repetition
rate.

Oscillo
A B Sync
S1 SO
PC générant RS232 RxD o
dapt. ic
des caractéres L TxD
Detection du Start

dopicbul

Both SndSer and RecSer routines for 16F84 can be found in
www . didel.com/doc/XSerR. asi.

2.4. Receive routine for 16F870

On PICs with an USART, the initialisation is as before, and the receive routine is given
below . One have now the time of the arrival of a complete character (1.1 ms) for
executing the instructions

Routine Serial receive at 9600 bit/s

out: DataRec = W

RecSer :
R$: TestSkip,BS PIR1:#RclIF
Jump R$
Move RcReg, W
Move W, DataRec
Ret

Both SndSer and RecSer routines for 16F870 can be found in
www . didel.com/doc/XSer7R.asi.

JON-DIDEL 18:43:66 87/64/61 8836 @TYPO:#MMI1:@TYPO:#MMI1:DOPICSER. TF 4

