RIC324

JON-DIDEL

J.D. Nicoud, Mouette 5 —

CH-1092 Belmont, Switzerland T’DE‘

Tel +41 21 728-6156, Fax 728-6157

Email info@didel.com, www.didel.com Fichier: www.didel.com/doc/DopicUti.pdf

Utility routines for serial transfers

1. Serial primitives

We suppose you have connected your Pic module to your PC, in which an
Hyperterminal or similar program is running. Serial transfers use the asynchronous transfer
universally, although improperly, named RS232. Hardware interface is documented on
www.didel.com/doc/RS232.pdf. Software primitives for 16F84 and 16F87x are documented
on www.didel.com/doc/DocSer.pdf. Three routines handle the serial transfer, and it is easy
to use them. Understanding their code in detail is not an absolute requirement for the
beginner: who knows how a ReadlLine / Writeline is programmed inside the C library? But it
is essential to define correctly which port bits are used. The absract view of these three
routines are:

Rouiine Initialize the serial port

; no parameter is passed to or given by this routine
mod: W - register W and Status word will always be modified, and we may omit to mention this every time

The IniSer routine is called once after initializing the port directions.

Rou’(ine Serial out

inn W
mod: DataSnd, plus two temporary registers in case of 16F84

Hence to send an Ascii character, its code must be prepared in W before the Call. If
letter A must be sent, the instructions to be written are:

Move #A,W
Call SndSer

The assembler knows the Ascii code values. The syntax "A” is indeed a number, the
value of the code of A, that is 16°41. One does not need to know Ascii codes, but it is
important to understand the general order: digits, upper cases, lower cases, special
characters inbetween. The complet code can be found in www.didel.com/doc/DocSer.pdf.

If one wishes to print the alphabet, a variable is initialized with the code of letter A,
and is incremented until a count of 26 or the code of letter Z is reached. Program
Xalpha.ASM (www.didel.com/doc/DopicSources.html) is a possible implementation.

The third routine wait for a character, to be received by the serial port. The result is
given in W with a copy in DataRec.

Routine Réception série

out: DataRec = W
mod: Two local variables for 16F84

As example, the following program module waits for characters, but accepts only letter
S (upper or lower case) to continue.

L$: Call RecSer
Clr DataRec : #6 ; convert lower case to upper.
Xor #'S”,W
Skip,EQ
Jump L$

. Do whatever is required when lettre S is depressed
Additional routines

Frequently, one puts a space or a carriage return between variables or texts. Three
routines are provided to save a little bit of program space, and improve the legibility. Note
that the return to next line “Call SndCr” sends a Carriage return (code 16°D) and a Line
feed (code 16°A), to be compatible with PCs.

21:44:36 02/67/61 8836 @TYPO:#MMI:@TYPO:#MMI:DOPICUTI.TF 1

RIC324

JON-DIDEL

Utility routines -2 - “DIDEL. June 2001

Routine Send a CRLF
Routitie:] SndSpace | Send a space
Routing’| SndBell | Send the Bell code

Inserted files

In order to be compatible with large programs, we use inserted files even in simple
applications. The main program will always be kept short. General routines are kept within
an inserted module. Their variables are defined in another module, but it may be preferable
to put together all the variables in a single module, the same way as all the 1/0 and
constant definitions are in a module that depends on the hardware.

The general structure of a program will be:
. Proc 16F84

. Ref 16F84
. Ins XXDef . Asi
.Loc DebVar
. Ins XXVar . asi
.Loc Q
Begin:
; initalizations
Loop:

; program loop

Jump Loop

; Routines

.Ins XXroutines . asi
.End

Displaying a text

Texts on the 16F84

If one needs to send a text to the terminal, it is not elegant to send it one letter at
a time, as shown before with letter A. A table containing the text is more clear and more
efficient. On the 16F84, every text has to be embeded inside a specific routine, and the
letters are fetched in the table with the RetMove instruction. The text must not overlap a
page, as for all “retmove” tables.

The routine for displaying “Hello” needs an incrementing pointer and some way to stop
the transfer at the end of the text. Instead of using a counter, we prefer to use a special
character as the terminator for the text. Ascii code O is reserved for that. Hence, the loop
will read the consecutive characters, and when code zero is found, it means the end of the
text.

Hello : Clr I ndex ; Point the beginning of text
T$: Move Index , W
Inc I ndex
Call TextHello
Or #0 ,W ; Test if W is zero
Skip ,NE
Ret ; All text has been scanned
Call SndSer
Jump T$
TextHello :
Add W,PCL
RetMove #"'H",W
RetMove “"e",W
RetMove LW
RetMove LW

e
I ’
I ’
RetMove o
RetMove #0,W
The problem, if a second text has to be displayed, is the “Call TextHello” instruction
cannot be computed. A new “Hello” routine must be written for a new text, unless all texts
are consecutive within the same page.

The send text routine is anyway good only for text longer than 8 letters. For short
text, the naive way is more efficient, but one should simplify the writing with a macro:

21:44:36 02/67/61 8836 @TYPO:#MMI:@TYPO:#MMI:DOPICUTI.TF 2

RIC324

JON-DIDEL

Utility routines - “DIDEL. June 2001

Txt
Move
Call

. Endmacro

.Macro
#'%1",W
SndSer

Hello:

Txt H

Txt e

Txt |

Txt |

Txt [¢)

Ret

If one needs to read a text, the problem is where to store it: it is easy to point with

the FSR register and store data into registers, but there are very few registers. Usually, the
Ascii dialogues are simples (one or two lettres), and interpreted on the fly. It is a

microcontroller, isnt-it?
Texts on the 16F87x

Handling texts on the 16F87x is easier and faster, since a register that points to
program memory has been added. It is a 16-bit register (13 bits are used on the 16F87x),
that is two registers, EEAdrH et EEAdr, must be prepared. The result is a 14-bit word in
EEDataH and EEData. Hence to read program memory, one prepares the two address
registers, ask for a read as specified in Microchip documentation, and one can transfer the
data from the data registers. If only the 8 low bits are significant, as in a text table, one
does not need to read the high part.

AfText

W text address

16F87x - Send the text at address W in page TextPage

in:

AfText :
Move W, EeAdr
Move #TextPage ,W
Move W, EeAdrH
Bank2to3
Clr EECON1 : #EEPGD
Set EECON1 : #RD ; Read bit
Nop
Nop
Bank3to2
Move EeData,W
Bank2to®
Or #0 ,W ; Test if W is zero
Skip ,NE
Ret ; All text has been scanned
Call SndSer
Inc EeAdr
Jump T$
Texts are directly stored in memory with the .16 pseudo.
TextHello : .16 CHT, e, T, T, Mo
TextOK: .16 "o", 'K

When preparing the parameter before calling for a text, one

needs to mask the high

address byte (it is defined inside the routine). Having all texts in the same page simplifies
greatly the routine and its call.

#TextHello.AND.16°FF ,W
AfText

Move
Call

Displaying a variable

An 8-bit word from an |/O port or a variable is at best represented on the terminal as
two 4-bit nibbles, coded in Ascii. In few applications, a conversion to decimal is usefull.
Decimal is displayed with the hexadecimal routine.

Converting binary to hex is a little tricky due to the fact that digits O to 9 (4-bit
nibbles) are mapped on Ascii codes “0” to “9”, and the next 6 values are not consecutive
on the Ascii code list. The algorithm is explained in www.didel.com/doc/DopicHex.pdf.

The SndHex routine sends the content of W as two hexa characters. W is saved in

variable SavBin for possible usage at when returning from the routine.

21:44:36 02/67/61 8836 @TYPO:#MMI:@TYPO:#MMI:DOPICUTI.TF 3

RIC324

Utility routines -4 - “DIDEL. June 2001

Routine Send an 8 bit byte as two hexadecimal characters

; Call routine SndSer
inn W
;Ir?lod: SavBin = copy of initial W value
Routine SendHex can be found in XTrSndR.asi module, which does not includes the
SndSer and RecSer routines, which depends on the hardware (XSerR.asm for 16F84,

XSer7R.asm for 16F87x).

As an example, let us display the Ascii code of the letter typed on the terminal
(16F87x):

XTrSer7.asm | Test série RecSer SndHex \Iariahlesl:l Globales
PicGénial 870 .Loc DebVar
.Proc 16F870 . Ins XSer7V.asi
.Ref 16F870 . Ins XTrSerV.asi
.List @ .Loc 0
.Ins 16F870M.asi

.Endlist Programme
s
Gonstant] PortA et B | pjra = -1 ; entrées Move #DirA, W

’

DirB =0 ; sorties Move W, TrisA

Move #DirB , W
Gonstant bTxD =6 Move W, TrisB
bRxD = 7 Call IniSer
DirC = 2°10011000 Loop: Echo
IniRcSta = 210011000 Call RecSer
IniTxSta = 2700100100 Move W, PortB
I niSpBrg = 10°25 Not PortB ; Code on Leds
PortSer =7 ;id Call SndHex
Ascii Call SndSpace
CR = 16°0D Jump Loop
LF = 16°0A . Ins XSer7R.asi
BEL = 16°07 . Ins XTrSerR.asi

.End

It is important to remember that the output parameter of RecSer is W, and the input
parameter of SndHex is also W. W is not modified between the two calls. But now, if one
needs to improve the legibility and put a space between the character and its code (the
terminal is supposed to be in “echo” mode), there is a problem.

Call RecSer
Call SndSpace
Call SndHex

A wrong hexadecimal value will be displayed, since SndSpace modify W. One needs to
remember that RecSer saves also the result in DataRec variable, where we can get it back
after the “Call SndSpace”.

Call RecSer
Call SndSpace
Move DataRec ,W
Call SndHex

Displaying in decimal

It is frequently usefull to display a binary value (O to 16°FF) in decimal (O to 256).
Binary—-decimal routines are explained in ww.didel.com/doc/DopiBinD.pdf. The conversion
routine in TrHexR.asi file sends the characters to the serial line as soon as converted.

Roitine’| SndBinDec | 080201

; Convert a binary number @-255 and sends it as 2 or 3 Ascii digits
; 167Co (192) --> 1 9 2 16°F --=> 1 5 16’5 --=> 0 5

in: SavBin 8 bits value
out: 2 or 3 caracters

Receiving an 8-bit variable value

The RecHex routine reads two Ascii characters from the keybord, and returns the
concatenated 8-bit word both in W and in SavBin. lts listing is explained in
www . didel.com/doc/DocPicHex.pdf. As routine users, we just need to know what are the
parameters in and out.

JON-DIDEL 21:44:36 62/67/61 8836 @TYPO:#MMI1:@TYPO:#MMI:DOPICUTI.TF 4

RIC324

JON-DIDEL

Utility routines -5 - “DIDEL. June 2001

Routine Read hex digits until a code <"0" is typed

out: W = SavBin value, DataRec last character (terminator)

More than two digits can be typed, but only the last two will be stored. This is
convenient if there is a typing error: two zero clear the buffer,and the corrected value can
be typed. The terminator can be one of the following signs: CR Escape Space, ! ” # & %
() %+, - . /. With 5 to 10 more instructions in the routine, any non hexa character
could terminate. With our short routine, many characters should not be typed.

As example, if one needs to check how the terminal respond to special characters, on
can write the following test loop. Typing 41\space; (a space or CR as terminator) will
display A. Typing 7\space; should ring the bell on the PC.

L$: Call RecHex
Call SndSer
Jump L$

Again, if a space must be added, W will be destroyed, but the binary value can be
found in SavBin.

21:44:36 02/67/61 8836 @TYPO:#MMI:@TYPO:#MMI:DOPICUTI.TF 5

